Abstract

Multihop wireless broadcast is an important component in vehicular networks. Many applications are built on broadcast communications, so efficient routing methods are critical for their success. Here, we develop the Distribution-Adaptive Distance with Channel Quality (DADCQ) protocol to address this need and show that it performs well compared to several existing multihop broadcast proposals. The DADCQ protocol utilizes the distance method to select forwarding nodes. The performance of this method depends heavily on the value of the decision threshold, but it is difficult to choose a value that results in good performance across all scenarios. Node density, spatial distribution pattern, and wireless channel quality all affect the optimal value. Broadcast protocols tailored to vehicular networking must be adaptive to variation in these factors. In this work, we address this design challenge by creating a decision threshold function that is simultaneously adaptive to the number of neighbors, the node clustering factor, and the Rician fading parameter. To calculate the clustering factor, we propose using the quadrat method of spatial analysis. The resulting DADCQ protocol is then verified with JiST/SWANS and shown to achieve high reachability and low bandwidth consumption in urban and highway scenarios with varying node density and fading intensity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call