Abstract

Landslides are geological events that frequently cause major disasters. Research on landslides is essential, but current studies mostly use historical landslide data and do not reflect dynamic, real-time research results. In this study, landslide deformations and land-use changes were used to analyze the landslide distribution in Fengjie County and Wushan County in the Three Gorges Reservoir Area (TGRA) by using interferometric and polarimetric SAR. In this study, the mean annual rate of landslide deformations was obtained using the small baseline subset interferometric synthetic aperture radar (SBAS-InSAR) for the ALOS-2 (2014–2019) data. Land-use changes were based on the 2007 and 2017 land-use results from dual-polarization ALOS-1 and ALOS-2 data, respectively. To address the problem of classification accuracy reduction caused by geometric distortion in mountainous areas, we first used texture maps and pseudocolor maps synthesized with dual-polarization intensity maps to perform classification with random forest (RF), and then we used coherence and slope maps to run the K-Means algorithm (KMA). We named this the secondary classification method. It is an improvement on the single classification method, exhibiting a 94% classification accuracy, especially in rugged areas. Combined with land-use changes, GIS spatial analysis was used to analyze the spatial distribution of landslides, and it was found that the landslide rate was significantly correlated with the type after change, with a correlation coefficient of 0.7. In addition, land-use types associated with human activities, such as cultivated vegetation, were more likely to cause landslide deformation, which can be used to guide local land-use planning.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call