Abstract

The preservation of the pairwise distances measured in a data set ensures that the low dimensional embedding inherits the main geometric properties of the data like the local neighborhood relationships. In this paper, distance preserving technique namely, Sammons nonlinear mapping (Sammon‟s NLM) and Curvilinear Component Analysis (CCA) have been discussed and compared for non-linear dimensionality reduction. Basic principle in both the technique is that local neighborhood relationship is maintained. The results have beencompared for both the techniques on artificially generated data set using MATLAB software. General Terms Neighborhood relationship, Variance, PCA, Manifold, Nonlinear, Convergence.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.