Abstract

This study is intended to identify efficacy, evolving applications, best practices, and challenges of spatial disorientation (SD) training in flight simulators for rotor wing pilots. Queries of a UK Ministry of Defense research database and Pub Med were undertaken using the search terms 'spatial disorientation,' 'rotor wing,' and 'flight simulator.' Efficacy, evolving applications, best practices, and challenges of SD simulation for rotor wing pilots were also ascertained through discussion with subject matter experts and industrial partners. Expert opinions were solicited at the aeromedical physiologist, aeromedical psychologist, instructor pilot, aeromedical examiner, and corporate executive levels. Peer review literature search yielded 129 articles, with 5 relevant to the use of flight simulators for the spatial disorientation training of rotor wing pilots. Efficacy of such training was measured subjectively and objectively. A preponderance of anecdotal reports endorse the benefits of rotor wing simulator SD training, with a small trial substantiating performance improvement. Advancing technologies enable novel training applications. The mobile nature of flight students and concurrent anticollision technologies can make long-range assessment of SD training efficacy challenging. Costs of advanced technologies could limit the extent to which the most advanced simulators can be employed across the rotor wing community. Evidence suggests the excellent training value of rotor wing simulators for SD training. Objective data from further research, particularly with regards to evolving technologies, may justify further usage of advanced simulator platforms for SD training and research. Powell-Dunford N, Bushby A, Leland RA. Spatial disorientation training in the rotor wing flight simulator. Aerosp Med Hum Perform. 2016; 87(10):890-893.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.