Abstract
There are three commonly recognized second-order self-adjoint forms of the neutron transport equation: the even-parity equations, the odd-parity equations, and the self-adjoint angular flux equations. Because all of these equations contain second-order spatial derivatives and are self-adjoint for the mono-energetic case, standard continuous finite-element discretization techniques have proved quite effective when applied to the spatial variables. We first derive analogs of these equations for the case of time-dependent radiative transfer. The primary unknowns for these equations are functions of the angular intensity rather than the angular flux, hence the analog of the self-adjoint angular flux equation is referred to as the self-adjoint angular intensity equation. Then we describe a general, arbitrary-order, continuous spatial finite-element approach that is applied to each of the three equations in conjunction with backward-Euler differencing in time. We refer to it as the “standard” technique. We also introduce an alternative spatial discretization scheme for the self-adjoint angular intensity equation that requires far fewer unknowns than the standard method, but appears to give comparable accuracy. Computational results are given that demonstrate the validity of both of these discretization schemes.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.