Abstract

PurposeCasuarina equisetifolia, a fast-growing, abundant tree species on the southeastern coast of China, plays an important role in protecting the coastal environment, but the ecological processes that govern microbiome assembly and within-plant microorganism transmission are poorly known.MethodsIn this paper, we used ITS and 16S amplification techniques to study the diversity of fungal and bacterial endophytes in critical plant parts of this species: seeds, branchlets, and roots. Additionally, we examined the litter of this species to understand the process of branchlets from birth to litter.ResultWe uncovered a non-random distribution of endophyte diversity in which branchlets had the greatest and seeds had the lowest endophytic fungal diversity. In contrast, litter endophytic bacteria had the highest diversity, and branchlets had the lowest diversity. As for fungi, a large part of the seed microbiome was transmitted to the phyllosphere, while a large part of the bacterial microbiome in the seed was transmitted to the root.ConclusionOur study provides comprehensive evidence on diversity, potential sources, and transmission pathways for non-crop microbiome assembly and has implications for the management and manipulation of the non-crop microbiome in the future.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.