Abstract

The combination of laser capture microdissection and mass spectrometry represents a powerful technology for studying spatially resolved proteomes. Moreover, the compositions of integral membrane proteomes have rarely been studied in a spatially resolved manner. In this study, ocular lens tissue was carefully dissected by laser capture microdissection and conditions for membrane protein enrichment, trypsin digestion, and mass spectrometry analysis were optimized. Proteomic analysis allowed the identification of 170 proteins, 136 of which were identified with more than one peptide match. Spatial differences in protein expression were observed between cortical and nuclear samples. In addition, the spatial distribution of post-translational modifications to lens membrane proteins, such as the lens major intrinsic protein AQP0, were investigated and regional differences were measured for AQP0 C-terminal phosphorylation and truncation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.