Abstract

AbstractThe present study examines dipolarization events observed by the Van Allen Probes within 5.8 RE from Earth. It is found that the probability of occurrence is significantly higher in the dusk‐to‐midnight sector than in the midnight‐to‐dawn sector, and it deceases sharply earthward. A comparison with observations made at nearby satellites shows that dipolarization signatures are often highly correlated (c.c. >0.8) within 1 hr in magnetic local time (MLT) and 1 RE in RXY, and the dipolarization region expands earthward and westward in the dusk‐to‐midnight sector. The westward expansion velocity is estimated at 0.4 hr (in MLT) per minute, or 60 km/s, which is consistent with the previously reported result for geosynchronous dipolarization. The earthward expansion is apparently less systematic than the westward expansion. Its velocity is estimated at 50 km/s (0.5 RE/min), comparable to the westward expansion velocity, but it is suggested that the earthward expansion slows down as the dipolarization region approaches Earth, and it eventually stops. This idea is consistent with the earthward reduction of the occurrence probability of dipolarization events. Whereas this earthward expansion is difficult to explain with the conventional wedge current system, it may be understood in terms of a current system with two wedges, one with the R1 polarity outside and the other with the R2 polarity closer to Earth. For such a current system the region of dipolarization is confined in radial distance between the two wedge currents, and it is considered to expand earthward as the R2‐sense wedge moves earthward along with injected plasma.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.