Abstract

We have studied the gap instability in a superconductor under tunneling injection at high voltages by probing the spatial distribution of the phonon emission. A high sensitivity was achieved by using the fountain pressure of superfluid helium for detecting the phonons. Spatial structures were observed at gap depressions as small as 2%. From their spatial development we find that the quasiparticles diffuse into regions where their density is higher.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call