Abstract
The new generation of distributed optical sensors with improved interrogation, multiplexing, and acquisition techniques with the possibility of performing measurements with high spatial resolution over tens of kilometers of optical fiber has led to the accumulation of a vast volume of data that can present a big challenge to process and store all this data. Looking for simple solutions to this problem, we present in this paper a data compression method for distributed temperature sensors. This compression approach performs the spatial derivative of the temperature signal, constituting a simple and effective method to remove redundant information. Also, this compression methodology is suitable for temperature data, as it follows thermal variations over time and can be applied to any temperature profile with multiple thermal events along the sensing fiber, whether in heating or cooling circumstances. Tests performed with a large amount of experimental data showed that an average compression ratio of 1.5× can be obtained by removing redundant spatial temperature variations without losing spatial resolution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.