Abstract

AbstractThis paper presents a new spatial dependence model with an adjustment of feature difference. The model accounts for the spatial autocorrelation in both the outcome variables and residuals. The feature difference adjustment in the model helps to emphasize feature changes across neighboring units, while suppressing unobserved covariates that are present in the same neighborhood. The prediction at a given unit incorporates components that depend on the differences between the values of its main features and those of its neighboring units. In contrast to conventional spatial regression models, our model does not require a comprehensive list of global covariates necessary to estimate the outcome variable at the unit, as common macro‐level covariates are differenced away in the regression analysis. Using the real estate market data in Hong Kong, we applied Gibbs sampling to determine the posterior distribution of each model parameter. The result of our empirical analysis confirms that the adjustment of feature difference with an inclusion of the spatial error autocorrelation produces better out‐of‐sample prediction performance than other conventional spatial dependence models. In addition, our empirical analysis can identify components with more significant contributions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.