Abstract
We applied the quantum path integral Monte Carlo method for the study of (para-H)N (N = 5-33) clusters at T = 2 K, exploring static and dynamic order, which originates from the effects of zero-point energy, kinetic energy, and thermal fluctuations in quantum clusters. Information on dynamic structure was inferred from the asymptotic tails of the cage correlation function calculated from the centroid Monte Carlo trajectory. The centroid cage correlation function decays to zero for large clusters (N = 15-33), manifesting the interchange of molecules between different solvation shells, with statistically diminishing back interchange. Further evidence for the floppiness of para-hydrogen clusters emerges from the Monte Carlo evolution of the centroid of a tagged molecule, which exhibits significant changes in the list of its first and second solvation shells due to the interchange of molecules between these shells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.