Abstract

Due to the high kinetic energy of impactors in space, hypervelocity impacts on spacecraft can ablate spacecraft material and produce plasmas. These plasmas have been observed in ground-based experiments to produce electromagnetic pulses (EMPs) and are suspected to be a cause of spacecraft anomalies. The initial EMP that is produced after plasma formation is replicated using a 2D electromagnetic plasma simulation, consisting of a discontinuous Galerkin, particle-in-cell (DG-PIC) framework. The spontaneous formation of EMPs from an initial quasineutral plasma is consistent with previous works and show behavior similar to that of waves emitted by antennas. The EMP emits from the plasma with a frequency less than the plasma frequency associated with the point of maximum density, showing the importance of the density gradient, and the far-field region of the “plasma antenna” is estimated. From the proportionality between plasma frequency and EMP frequency, there is a direct correlation between plasma density and radiation. As the plasma density decreases, the EMP frequency decreases, which suggests that several observable phenomena, such as optical flashes, radio frequency emission, and microwave emission, all result from the same plasma-related mechanism within a single hypervelocity impact.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call