Abstract
The spatial decay behavior of solutions of a coupled system of second-order quasilinear partial differential equations, in divergence form, defined on a two-dimensional semi-infinite strip, is investigated. Such equations arise in the theory of anti-plane shear deformations for isotropic nonlinearly thermoelastic solids. Differential inequality techniques are employed to obtain exponential decay estimates. The results are illustrated by several examples. The results are relevant to Saint-Venant principles for nonlinear thermoelasticity as well as to theorems of Phragmen-Lindelof type.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Journal of Elasticity
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.