Abstract
Data mining is usually defined as searching,analyzing and sifting through large amounts of data to find relationships, patterns, or any significant statistical correlation. Spatial Data Mining (SDM) is the process of discovering interesting, useful, non-trivial patterns information or knowledge from large spatial datasets.Extracting interesting and useful patterns from spatial datasets must be more difficult than extracting the corresponding patterns from traditional numeric or categorical data due to the complexity of spatial data types, spatial relationships, and spatial auto-correlation.Emphasized overviewed the unique features that distinguish spatial data mining from classical Data Mining, and presents major accomplishments of spatial Data Mining research. Extracting interesting patterns and rules from spatial datasets, such as remotely sensed imagery and associated ground data, can be of importance in precision agriculture, community planning,resource discovery and other areas.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.