Abstract
The effect of spatial curvature on primordial perturbations is controlled by ΩK,0/cs2 , where ΩK,0 is today's fractional density of spatial curvature and cs is the speed of sound during inflation. Here we study these effects in the limit cs≪ 1 . First, we show that the standard cosmological soft theorems in flat universes are violated in curved universes and the soft limits of correlators can have non-universal contributions even in single-clock inflation. This is a consequence of the fact that, in the presence of spatial curvature, there is a gap between the spectrum of residual diffeomorphisms and that of physical modes. Second, there are curvature corrections to primordial correlators, which are not scale invariant. We provide explicit formulae for these corrections to the power spectrum and the bispectrum to linear order in curvature in single-clock inflation. We show that the large-scale CMB anisotropies could provide interesting new constraints on these curvature effects, and therefore on ΩK,0/cs2 , but it is necessary to go beyond our linear-order treatment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.