Abstract

Crowdsourcing is a computing paradigm where humans are actively involved in a computing task, especially for tasks that are intrinsically easier for humans than for computers. Spatial crowdsourcing is an increasing popular category of crowdsourcing in the era of mobile Internet and sharing economy, where tasks are spatiotemporal and must be completed at a specific location and time. In fact, spatial crowdsourcing has stimulated a series of recent industrial successes including sharing economy for urban services (Uber and Gigwalk) and spatiotemporal data collection (OpenStreetMap and Waze). This survey dives deep into the challenges and techniques brought by the unique characteristics of spatial crowdsourcing. Particularly, we identify four core algorithmic issues in spatial crowdsourcing: (1) task assignment, (2) quality control, (3) incentive mechanism design, and (4) privacy protection. We conduct a comprehensive and systematic review of existing research on the aforementioned four issues. We also analyze representative spatial crowdsourcing applications and explain how they are enabled by these four technical issues. Finally, we discuss open questions that need to be addressed for future spatial crowdsourcing research and applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.