Abstract
The author addresses the spatial coherence of high-frequency acoustic signals that have been forward scattered from the sea surface. The Fresnel-corrected Kirchhoff approximation is applied to derive closed-form expressions for the spatial coherence. These expressions are used to study the influence of geometrical and environmental factors on the coherence. An application of the theory involving the rejection of the surface image of a source by a vertical adaptive line array is presented. The author concludes that the environment has a strong impact on the array processing of surface-scattered fields through its influence on both vertical and horizontal spatial coherence. >
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.