Abstract

Depth estimation from monocular videos has important applications in many areas such as autonomous driving and robot navigation. It is a very challenging problem without knowing the camera pose since errors in camera-pose estimation can significantly affect the video-based depth estimation accuracy. In this paper, we present a novel SC-GAN network with end-to-end adversarial training for depth estimation from monocular videos without estimating the camera pose and pose change over time. To exploit cross-frame relations, SC-GAN includes a spatial correspondence module which uses Smolyak sparse grids to efficiently match the features across adjacent frames, and an attention mechanism to learn the importance of features in different directions. Furthermore, the generator in SC-GAN learns to estimate depth from the input frames, while the discriminator learns to distinguish between the ground-truth and estimated depth map for the reference frame. Experiments on the KITTI and Cityscapes datasets show that the proposed SC-GAN can achieve much more accurate depth maps than many existing state-of-the-art methods on monocular videos.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.