Abstract

In multiple sclerosis (MS), a non-random and clinicallyrelevant pattern of gray matter (GM) volume loss has been described. Whether differences in regional gene expression might underlay distinctive pathological processes contributing to this regional variability has not been explored yet. Two hundred eighty-six MS patients and 172 healthy controls (HC) underwent a brain 3T MRI, a complete neurological evaluation and a neuropsychological assessment. Using Allen Human Brain Atlas, voxel-based morphometry and MENGA platform, we integrated brain transcriptome and neuroimaging data to explore the spatial cross-correlations between regional GM volume loss and expressions of 2710 genes involved in MS (p < 0.05, family-wise error-corrected). Enrichment analyses were performed to evaluate overrepresented molecular functions, biological processes and cellular components involving genes significantly associated with voxel-based morphometry-derived GM maps (p < 0.05, Bonferroni-corrected). A diffuse GM volume loss was found in MS patients compared to HC and it was spatially correlated with 74 genes involved in GABA neurotransmission and mitochondrial oxidoreductase activity mainly expressed in neurons and astrocytes. A more severe GM volume loss was spatially associated, in more disabled MS patients, with 44 genes involved in mitochondrial integrity of all resident cells of the central nervous system (CNS) and, in cognitivelyimpaired MS patients, with 64 genes involved in mitochondrial protein heterodimerization and oxidoreductase activities expressed also in microglia and endothelial cells. Specific differences in the expressions of genes involved in synaptic GABA receptor activities and mitochondrial functions in resident CNS cells may influence regional susceptibility to MS-related excitatory/inhibitory imbalance and oxidative stress, and subsequently, to GM volume loss.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.