Abstract

We calculate the Casimir–Polder intermolecular potential using an effective Hamiltonian recently introduced. We show that the potential can be expressed in terms of the dynamical polarizabilities of the two atoms and the equal-time spatial correlation of the electric field in the vacuum state. This gives support to an interesting physical model recently proposed in the literature, where the potential is obtained from the classical interaction between the instantaneous atomic dipoles induced and correlated by the vacuum fluctuations. Also, the results obtained suggest a more general validity of this intuitive model, for example, when external boundaries or thermal fields are present.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.