Abstract
SummaryTraditional probabilistic seismic hazard analysis (PSHA) uses ground‐motion models that are based on the ergodic assumption, which means that the distribution of ground motions over time at a given site is the same as their spatial distribution over different sites. Evaluations of ground‐motion data sets with multiple measurements at a given site and multiple earthquakes in a given region have shown that the ergodic assumption is not appropriate as there are strong systematic region‐specific source terms and site‐specific path and site terms that are spatially correlated. We model these correlations using a spatial Gaussian process model. Different correlations functions are employed, both stationary and non‐stationary, and the results are compared in terms of their predictive power. Spatial correlations of residuals are investigated on a Taiwanese strong‐motion data set, and ground motions are collected at the ANZA, CA array. Source effects are spatially correlated, but provide a much stronger benefit in terms of prediction for the ANZA data set than for the Taiwanese data set. We find that systematic path effects are best modeled by a non‐stationary covariance function that is dependent on source‐to‐site distance and magnitude. The correlation structure estimated from Californian data can be transferred to Taiwan if one carefully accounts for differences in magnitudes. About 50% of aleatory variance can be explained by accounting for spatial correlation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.