Abstract

We propose a method for constructing confidence intervals that account for many forms of spatial correlation. The interval has the familiar “estimator plus and minus a standard error times a critical value” form, but we propose new methods for constructing the standard error and the critical value. The standard error is constructed using population principal components from a given “worst‐case” spatial correlation model. The critical value is chosen to ensure coverage in a benchmark parametric model for the spatial correlations. The method is shown to control coverage in finite sample Gaussian settings in a restricted but nonparametric class of models and in large samples whenever the spatial correlation is weak, that is, with average pairwise correlations that vanish as the sample size gets large. We also provide results on the efficiency of the method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.