Abstract

By using the generalized Debye diffraction integral, this paper studies the spatial correlation properties and phase singularity annihilation of apertured Gaussian Schell-model (GSM) beams in the focal region. It is shown that the width of the spectral degree of coherence can be larger, less than or equal to the corresponding width of spectral density, which depends not only on the scalar coherence length of the beams, but also on the truncation parameter. With a gradual increase of the truncation parameter, a pair of phase singularities of the spectral degree of coherence in the focal plane approaches each other, resulting in subwavelength structures. Finally, the annihilation of pairs of phase singularities takes place at a certain value of the truncation parameter. With increasing scalar coherence length, the annihilation occurs at the larger truncation parameter. However, the creation process of phase singularities outside the focal plane is not found for GSM beams.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.