Abstract

We report computer simulations on the oscillatory of CuZr metallic glasses at zero temperature with different shear amplitudes. In small system a homogenous shear deformation is found, while in large system an inhomogeneous shear deformation is found with a shear band formed. Concomitantly, spatial correlation of irreversible displacement exhibits an isotropic and exponential decay in the case of homogeneous deformation, whereas a mixed power-law and exponential decay in the case of anisotropic and inhomogeneous deformation. By projecting the azimuthal-dependent correlation function onto the spherical harmonics, we found a strong polar symmetry that accounts for the emerged shear band, and a weaker quadrupolar symmetry that accounts for the elastic filed generated by Eshelby inclusions. By this, we conclude that the anisotropy and decaying formula of the plastic correlation are dominated by the homogeneity or inhomogeneity for the deformation in the metallic glasses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.