Abstract

We quantify the correlation between spatial patterns of aftershock hypocenter locations and the distribution of coseismic slip and stress drop on a main shock fault plane using two nonstandard statistical tests. Test T1evaluates if aftershock hypocenters are located in low‐slip regions (hypothesis H1), test T2evaluates if aftershock hypocenters occur in regions of increased shear stress (hypothesis H2). In the tests, we seek to reject the null hypotheses H0: Aftershock hypocenters are not correlated with (1) low‐slip regions or (2) regions of increased shear stress, respectively. We tested the hypotheses on four strike‐slip events for which multiple earthquake catalogs and multiple finite fault source models of varying accuracy exist. Because we want to retain earthquake clustering as the fundamental feature of aftershock seismicity, we generate slip distributions using a random spatial field model and derive the stress drop distributions instead of generating seismicity catalogs. We account for uncertainties in the aftershock locations by simulating them within their location error bounds. Our findings imply that aftershocks are preferentially located in regions of low‐slip (u≤umax) and of increased shear stress (Δσ < 0). In particular, the correlation is more significant for relocated than for general network aftershock catalogs. However, the results show that stress drop patterns provide less information content on aftershock locations. This implies that static shear stress change of the main shock may not be the governing process for aftershock genesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.