Abstract
A functional time series approach is proposed for investigating spatial correlation in daily maximum temperature forecast errors for 111 cities spread across the U.S. The modelling of spatial correlation is most fruitful for longer forecast horizons, and becomes less relevant as the forecast horizon shrinks towards zero. For 6-day-ahead forecasts, the functional approach uncovers interpretable regional spatial effects, and captures the higher variance observed in inland cities versus coastal cities, as well as the higher variance observed in mountain and midwest states. The functional approach also naturally handles missing data through modelling a continuum, and can be implemented efficiently by exploiting the sparsity induced by a B-spline basis. The temporal dependence in the data is modeled through temporal dependence in functional basis coefficients. Independent first order autoregressions with generalized autoregressive conditional heteroskedasticity [AR(1)+GARCH(1,1)] and Student-t innovations work well to capture the persistence of basis coefficients over time and the seasonal heteroskedasticity reflecting higher variance in winter. Through exploiting autocorrelation in the basis coefficients, the functional time series approach also yields a method for improving weather forecasts and uncertainty quantification. The resulting method corrects for bias in the weather forecasts, while reducing the error variance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.