Abstract

Wireless Sensor Networks (WSN) are mainly characterized by dense deployment of sensor nodes which collectively transmit information about sensed events to the sink. Due to the spatial correlation between sensor nodes subject to observed events, it may not be necessary for every sensor node to transmit its data. This paper shows how the spatial correlation can be exploited on the Medium Access Control (MAC) layer. To the best of our knowledge, this is the first effort which exploits spatial correlation in WSN on the MAC layer. A theoretical framework is developed for transmission regulation of sensor nodes under a distortion constraint. It is shown that a sensor node can act as a representative node for several other sensor nodes observing the correlated data. Based on the theoretical framework, a distributed, spatial Correlation-based Collaborative Medium Access Control (CC-MAC) protocol is then designed which has two components: Event MAC (E-MAC) and Network MAC (N-MAC). E-MAC filters out the correlation in sensor records while N-MAC prioritizes the transmission of route-thru packets. Simulation results show that CC-MAC achieves high performance in terms energy, packet drop rate, and latency.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.