Abstract
Issues relating to spatially autocorrelated disturbance terms are often considered in regional econometric models.1 Although various models have been suggested to describe such spatial correlation, one of the most widely used models is a spatial autoregressive (AR) model which was originally suggested by Whittle (1954) and then extensively studied by Cliff and Ord (1973).2 In the model the regression disturbance vector is viewed as the sum of two parts. One of these parts involves the product of a spatial weighting matrix and a scalar parameter, say p; the other is a random vector whose elements are typically assumed to be independent and identically distributed (i.i.d.) with zero mean and finite variance. We will henceforth refer to this random vector as the innovation vector, so as to distinguish it from the disturbance vector.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.