Abstract

In this work, a stable ratiometric nanofluorescent probe for the detection of 2,6-dipicolinic acid (DPA), a Bacillus anthracis biomarker, was developed based on confinement-induced emission enhancement of cationic styrylpyridine salt derivative L in MCM-22 molecular sieve pores. The cationic L and the lanthanide Tb3+ were loaded into the pores of the molecular sieve by electrostatic interaction with the negatively charged AlO4 tetrahedron unit, and L exhibited enhanced red fluorescence emission as a stable fluorescence reference mark in the nanoprobe platform due to the restricted molecular torsion of L in the pores of MCM-22. At the same time, the characteristic green fluorescence emission of Tb3+ can be excited by energy transfer due to the “antenna effect” of DPA. The prepared Tb-L@MCM-22 nanoprobe showed specific selectivity and stable fluorescence ratiometric detection of DPA in tap water, lake water, bovine serum and actual bacterial spores. Benefiting from the confinement-induced fluorescence enhancement effect of L in the MCM-22 molecular sieve pores, the obtained Tb-L@MCM-22 can provide a stable reference signal for the fluorescence ratiometric detection of DPA with a limit of detection (LOD) of 78.6 nM and 1.310 × 104 spores per mL. More importantly, combining of the Tb-L@MCM-22 based DPA detection test strips with a smartphone app demonstrated a stable, convenient and rapid method for detecting of anthrax biomarkers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call