Abstract

Controlling the optical field down to the nanometer scale is a key step in optoelectronic applications and light–matter interaction at the nanoscale. Bowtie structures, rods, and sharp tapers are commonly used to realize such optical properties, but their fabrication is challenging. In this context, the complementary structures, namely, holes and cavities, are less explored. Herein, a simple system of two metallic nanocavities milled in thin silver film is used to confine the electromagnetic field to an area of ≈60 nm2. The field is confined onto a flat surface area and is either enhanced or suppressed by the polarization state of incident light. The energy of this spatially confined mode is determined by the distance between the two cavities and thus any color (wavelength) at the optical regime can be achieved. As a consequence, a dynamically controlled color is generated on an optical pixel size smaller than 1 µm2. Those results are supported by both transmission spectra and a cathodoluminescence study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.