Abstract

To develop and apply an image acquisition and analysis strategy for spatial comparison of computed tomography (CT)-ventilation images with hyperpolarized gas magnetic resonance imaging (MRI). Eleven lung cancer patients underwent xenon-129 (129Xe) and helium-3 (3He) ventilation MRI and coregistered proton (1H) anatomic MRI. Expiratory and inspiratory breath-hold CTs were used for deformable image registration and calculation of 3 CT-ventilation metrics: Hounsfield unit (CTHU), Jacobian (CTJac), and specific gas volume change (CTSGV). Inspiration CT and hyperpolarized gas ventilation MRI were registered via same-breath anatomic 1H-MRI. Voxel-wise Spearman correlation coefficients were calculated between each CT-ventilation image and its corresponding 3He-/129Xe-MRI, and for the mean values in regions of interest (ROIs) ranging from fine to coarse in-plane dimensions of 5×5, 10×10, 15×15, and 20×20, located within the lungs as defined by the same-breath 1H-MRI lung mask. Correlation of 3He and 129Xe-MRI was also assessed. Spatial correlation of CT-ventilation against 3He/129Xe-MRI increased with ROI size. For example, for CTHU, mean±SD Spearman coefficients were 0.37±0.19/0.33±0.17 at the voxel-level and 0.52±0.20/0.51±0.18 for 20×20 ROIs, respectively. Correlations were stronger for CTHU than for CTJac or CTSGV. Correlation of 3He with 129Xe-MRI was consistently higher than either gas against CT-ventilation maps over all ROIs (P<.05). No significant differences were observed between CT-ventilation versus 3He-MRI and CT-ventilation versus 129Xe-MRI. Comparison of ventilation-related measures from CT and registered hyperpolarized gas MRI is feasible at a voxel level using a dedicated acquisition and analysis protocol. Moderate correlation between CT-ventilation and MRI exists at a regional level. Correlation between MRI and CT is significantly less than that between 3He and 129Xe-MRI, suggesting that CT-ventilation surrogate measures may not be measuring lung ventilation alone.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call