Abstract
<abstract> <p>Spatial co-location pattern mining discovers the subsets of spatial features frequently observed together in nearby geographic space. To reduce time and space consumption in checking the clique relationship of row instances of the traditional co-location pattern mining methods, the existing work adopted density peak clustering to materialize the neighbor relationship between instances instead of judging the neighbor relationship by a specific distance threshold. This approach had two drawbacks: first, there was no consideration in the fuzziness of the distance between the center and other instances when calculating the local density; second, forcing an instance to be divided into each cluster resulted in a lack of accuracy in fuzzy participation index calculations. To solve the above problems, three improvement strategies are proposed for the density peak clustering in the co-location pattern mining in this paper. Then a new prevalence measurement of co-location pattern is put forward. Next, we design the spatial co-location pattern mining algorithm based on the improved density peak clustering and the fuzzy neighbor relationship. Many experiments are executed on the synthetic and real datasets. The experimental results show that, compared to the existing method, the proposed algorithm is more effective, and can significantly save the time and space complexity in the phase of generating prevalent co-location patterns.</p> </abstract>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.