Abstract

Holography is a long-established technique to encode an object's spatial information into a lower-dimensional representation. We investigate the role of the illumination's spatial coherence properties in the success of such an imaging system through point spread function and Fourier domain analysis. Incoherent illumination is shown to result in more robust imaging performance free of diffraction artifacts at the cost of incurring background noise and sacrificing phase retrieval. Numerical studies confirm that this background noise reduces image sensitivity as the image size increases, in agreement with other similar systems. Following this analysis, we demonstrate a 2D holographic imaging system realized with lensless, 1D measurements of microwave fields generated by dynamic metasurface apertures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call