Abstract

Clustering in spatial data mining is to group similar objects based on their distance, connectivity, or their relative density in space. In the real world there exist many physical obstacles such as rivers, lakes and highways, and their presence may affect the result of clustering substantially. We study the problem of clustering in the presence of obstacles and define it as a COD (Clustering with Obstructed Distance) problem. As a solution to this problem, we propose a scalable clustering algorithm, called COD-CLARANS. We discuss various forms of pre-processed information that could enhance the efficiency of COD-CLARANS. In the strictest sense, the COD problem can be treated as a change in distance function and thus could be handled by current clustering algorithms by changing the distance function. However, we show that by pushing the task of handling obstacles into COD-CLARANS instead of abstracting it at the distance function level, more optimization can be done in the form of a pruning function E'. We conduct various performance studies to show that COD-CLARANS is both efficient and effective.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.