Abstract

Heavy metal (loid)s (HMs) and polycyclic aromatic hydrocarbons (PAHs) in soils from a typical industrial county of Shanxi were synchronously measured to determine the spatial clustering of combined HMs and PAHs pollution, and the resulting source-specific health risks. The spatial interaction of HMs and PAHs was determined by the Moran's I index, and a bivariate local indicators of spatial association (LISA) analysis showed that the high HMs-high PAHs clusters were mainly distributed in Fencheng and Xijia towns, as well as the main urban areas of Xiangfen County. The spatial clusters of high naphthalene (Nap)-high HMs were more obvious than those of high benzo(a)pyrene (Bap)-high HMs. Based on positive matrix factorization (PMF), four sources were identified for both HMs and PAHs, with coal consumption and industrial emission identified as common sources of both pollutants. The source-oriented health risk was determined using an improved health risk assessment model. The cancer risk from the combined pollution industrial emissions was relatively serious for both adults and children, with the risk value exceeding 10−6. Therefore, special attention should be paid to emission control. Based on spatial clustering and source-specific health risk assessment, the largest risk areas and pollutant sources were in the main urban areas of Fencheng and Xijia towns. The spatial interaction patterns and source-specific HMs and PAHs pollution concentrations provide a basis for effective pollution management and control. Finally, a systematic framework for reference was proposed for risk area identification and analysis of the source-oriented health risks of combined HMs and PAHs pollution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call