Abstract
Aeolian dust emission is a serious environmental hazard in central Iran. We attempted to map the dust emission prone (DEP) areas in this region of Iran using the most accurate model among the random forest (RF), conditional RF (CRF), parallel RF (PRF), and extremely randomized trees (ERT) models. These models were evaluated using the Taylor diagram, Nash Sutcliffe coefficient, and Kling–Gupta efficiency. The generated map of DEP areas was also validated based on an aerosols optical depth (AOD) dataset. The Shapely values were used to determine the contribution of factors controlling dust events in DEP areas. The high performance and reliability of the ERT model for mapping DEP territories were confirmed by both error assessment statistics and reclassified AOD map. Using the ERT-generated map, five dust generation susceptibility classes including very low (20.16%), low (19.99%), moderate (19.82%), high (24.11%), and very high (15.92%) were identified in the study region. Drought severity, solar radiation, soil moisture, geology, soil sand content, bulk density, vegetation cover, land use, and slope were detected as the key features controlling dust emissions in central Iran. These results are useful for developing programs to reduce dust emissions hazards in DEP areas, particularly in central Iran.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.