Abstract

A fundamental neuroscience topic is the link between the brain's molecular, cellular, and cytoarchitectonic properties and structural connectivity. Recent studies relate inter-regional connectivity to gene expression, but the relationship to regional cell-type distributions remains understudied. Here, we utilize whole-brain mapping of neuronal and non-neuronal subtypes via the matrix inversion and subset selection algorithm to model inter-regional connectivity as a function of regional cell-type composition with machine learning. We deployed random forest algorithms for predicting connectivity from cell-type densities, demonstrating surprisingly strong prediction accuracy of cell types in general, and particular non-neuronal cells such as oligodendrocytes. We found evidence of a strong distance dependency in the cell connectivity relationship, with layer-specific excitatory neurons contributing the most for long-range connectivity, while vascular and astroglia were salient for short-range connections. Our results demonstrate a link between cell types and connectivity, providing a roadmap for examining this relationship in other species, including humans.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.