Abstract

The data quality of low-cost sensors has received considerable attention and has also led to PM2.5 warnings. However, the calibration of low-cost sensor measurements in an environment with high relative humidity is critical. This study proposes an efficient calibration and mapping approach based on real-time spatial model. The study carried out spatial calibration, which automatically collected measurements of low-cost sensors and the regulatory stations, and investigated the spatial varying pattern of the calibrated low-cost sensor data. The low-cost PM2.5 sensors are spatially calibrated based on reference-grade measurements at regulatory stations. Results showed that the proposed spatial regression approach can explain the variability of the biases from the low-cost sensors with an R-square value of 0.94. The spatial calibration and mapping algorithm can improve the bias and decrease to 39% of the RMSE when compared to the nonspatial calibration model. This spatial calibration and real-time mapping approach provide a useful way for local communities and governmental agencies to adjust the consistency of the sensor network for improved air quality monitoring and assessment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.