Abstract

Orientation within turbulent odor plumes occurs across a vast range of spatial and temporal scales. From salmon homing across featureless oceans to microbes forming reproductive spores, the extraction of spatial and temporal information from chemical cues is a common sensory phenomenon. Yet, given the difficulty of quantifying chemical cues at the spatial and temporal scales used by organisms, discovering what aspects of chemical cues control orientation behavior has remained elusive. In this study, we placed electrochemical sensors on the carapace of orienting crayfish and measured, with fast temporal rates and small spatial scales, the concentration fluctuations arriving at the olfactory appendages during orientation. Our results show that the spatial aspects of orientation (turning and heading angles) are controlled by the temporal aspects of odor cues.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call