Abstract

Steady waves at the interface between two immiscible and inviscid fluids of differing density are studied. The governing equations are reformulated as a spatial Hamiltonian system leading to new variational principles for uniform states and travelling waves. Analytical methods based on the properties of the Hamiltonian structure and numerical methods are used to find new branches of steady nonlinear interfacial waves in the neighbourhood of the singularity c = cg. While the water-wave problem (upper fluid density negligible) near this singularity has received considerable attention the results for interfacial waves present some new features. The branches of travelling waves when plotted in ( are related to the energy flux and flow force respectively, show new bifurcations in the context of hydrodynamic waves even at very low amplitudes. The secondary bifurcations are explained by a spatial analogue of the superharmonic instability. An interesting analogy is also found between the spatial bifurcations of travelling waves and the Kelvin–Helmholtz instability. The new branches of waves occur at physically realizable values of the parameters and therefore could have implications for interfacial waves in applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.