Abstract

In this paper we study the spatial behaviour of solutions for the three-phase-lag heat equation on a semi-infinite cylinder. The theory of three-phase-lag heat conduction leads to a hyperbolic partial differential equation with a fourth-order derivative with respect to time. First, we investigate the spatial evolution of solutions of an initial boundary-value problem with zero boundary conditions on the lateral surface of the cylinder. Under a boundedness restriction on the initial data, an energy estimate is obtained. An upper bound for the amplitude term in this estimate in terms of the initial and boundary data is also established. For the case of zero initial conditions, a more explicit estimate is obtained which shows that solutions decay exponentially along certain spatial–time lines. A class of non-standard problems is also considered for which the temperature and its first two time derivatives at a fixed time T 0 are assumed proportional to their initial values. These results are relevant in the context of the Saint–Venant Principle for heat conduction problems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.