Abstract

Attentional selection is a dynamic process that relies on multiple types of representations. That object representations contribute to attentional selection has been known for decades; however, most evidence for this contribution has been gleaned from studies that have relied on various forms of spatial cueing (some endogenous and some exogenous). It has thus remained unclear whether object-based attentional selection is a direct result of spatial cuing, or whether it still emerges without any spatial marker. Here we used a novel method-the temporal-order judgment (TOJ)-to examine whether object-based guidance emerges in the absence of spatial cuing. Participants were presented with two rectangles oriented either horizontally or vertically. Following a 150-ms preview time, two target stimuli were presented on the same or on different objects, and participants were asked to report which of the two stimuli had appeared first. The targets consisted of stimuli that formed a percept of a "hole" or a "hill." First, we demonstrated that the "hill" target was indeed processed faster, as evidenced by a positive perceived simultaneity (PSS) measure. We then demonstrated that if two targets appeared with equal probabilities on the same and on different objects, the PSS values, although positive, were not modulated by the objects. In a subsequent set of experiments, we showed that objects can modulate attentional allocation-however, only when they are biased by a spatial (endogenous) cue. In other words, in the absence of a spatial cue or bias, object representations do not guide attentional selection. In addition to providing new constraints for theories of object-based attentional guidance, these experiments introduce a novel paradigm for measuring object-based attentional effects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call