Abstract

This study combined data on fin whale Balaenoptera physalus, humpback whale Megaptera novaeangliae, minke whale B. acutorostrata, and sei whale B. borealis sightings from large-scale visual aerial and ship-based surveys (248 and 157 sightings, respectively) with synoptic acoustic sampling of krill Meganyctiphanes norvegica and Thysanoessa sp. abundance in September 2005 in West Greenland to examine the relationships between whales and their prey. Krill densities were obtained by converting relationships of volume backscattering strengths at multiple frequen- cies to a numerical density using an estimate of krill target strength. Krill data were vertically inte- grated in 25 m depth bins between 0 and 300 m to obtain water column biomass (g m -2 ) and trans- lated to density surfaces using ordinary kriging. Standard regression models (Generalized Additive Modeling, GAM, and Generalized Linear Modeling, GLM) were developed to identify important explanatory variables relating the presence, absence, and density of large whales to the physical and biological environment and different survey platforms. Large baleen whales were concentrated in 3 focal areas: (1) the northern edge of Lille Hellefiske bank between 65 and 67° N, (2) north of Paamiut at 63° N, and (3) in South Greenland between 60 and 61° N. There was a bimodal pattern of mean krill density between depths, with one peak between 50 and 75 m (mean 0.75 g m -2 , SD 2.74) and another between 225 and 275 m (mean 1.2 to 1.3 g m -2 , SD 23 to19). Water column krill biomass was 3 times higher in South Greenland than at any other site along the coast. Total depth-integrated krill biomass was 1.3 × 10 9 (CV 0.11). Models indicated the most important parameter in predicting large baleen whale presence was integrated krill abundance, although this relationship was only significant for sightings obtained on the ship survey. This suggests that a high degree of spatio-temporal synchrony in observations is necessary for quantifying predator-prey relationships. Krill biomass was most pre- dictive of whale presence at depths >150 m, suggesting a threshold depth below which it is energet- ically optimal for baleen whales to forage on krill in West Greenland.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.