Abstract
Spatial associations are one of the most relevant kinds of patterns used by business intelligence regarding spatial data. Due to the characteristics of this particular type of information, different approaches have been proposed for spatial association mining. This wide variety of methods has entailed the need for a process to integrate the activities for association discovery, one that is easy to implement and flexible enough to be adapted to any particular situation, particularly for small and medium-size projects to guide the useful pattern discovery process. Thus, this work proposes an adaptable knowledge discovery process that uses graph theory to model different spatial relationships from multiple scenarios, and frequent subgraph mining to discover spatial associations. A proof of concept is presented using real data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: TELKOMNIKA (Telecommunication Computing Electronics and Control)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.