Abstract

A partial least squares regression (PLSR) model to map internal soluble solids content (SSC) of apples using visible/near-infrared (VNIR) hyperspectral imaging was developed. The reflectance spectra of sliced apples were extracted from hyperspectral absorbance images obtained in the 400–1000 nm range. Prediction models for SSC mapping were developed for three different measurement/sampling designs that varied in the number and size of the regions of interest (ROIs) used for apple SSC measurement and spectral averaging. Case 1 used 29 small ROIs per apple, Case II used 9 moderate-size ROIs per apple, and Case III used 5 large ROIs per apple. The optimal pre-treatment of the spectra extracted from the hyperspectral images was investigated to enhance the performance of the prediction models. The coefficients of determination and root mean square errors of the best-performing models were, respectively, 0.802 and ±0.674 °Brix for Case I, 0.871 and ±0.524 °Brix for Case II, and 0.876 and ±0.514 °Brix for Case III. The accuracy of the PLSR models was enhanced by using the spectra and SSC measured/averaged from the fewer but larger areas of the apples rather than from more numerous but smaller areas. PLS images of SSC showed the predicted internal distribution of SSC within the apples. The overall results demonstrate that hyperspectral absorbance imaging techniques may be useful for mapping internal soluble solids content of apples.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call