Abstract

The objective of this review paper is to summarize the main properties of the spatial ARMA models and describe some of the well-known methods used in image filtering based on estimation of spatial autoregressive models. A new proposal based on robust RA estimation is also presented. Previous studies have shown that under additive outliers the RA estimator is resistant to a small percentage of contamination and behaves better than the LS, M, and GM estimators. A discussion about how well these models fit to a digital image is presented. Some applications using real images are presented to illustrate how an image is filtered in practice.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.