Abstract

BackgroundSince the advent of the Green Revolution, pesticides have played an important role in the global management of invertebrate pests including vector mosquitoes. Despite optimal efficacy, insects often display insensitivity to synthetic insecticides owing to prolonged exposure that may select for resistance development. Such insecticide insensitivity may regress national and regional coordination in mosquito vector management and indeed malaria control. In Botswana, prolonged use of synthetic insecticides against malaria vectors have been practiced without monitoring of targeted mosquito species susceptibility status.MethodsHere, susceptibility status of a malaria vector (Anopheles arabiensis), was assessed against World Health Organization-recommended insecticides, across three malaria endemic districts. Adult virgin female mosquitoes (2–5 days old) emerging from wild-collected larvae were exposed to standardized insecticide-impregnated papers with discriminating doses.ResultsThe results showed resistance dynamics were variable in space, presumably as a result of spatial differences in insecticide use across malaria endemic districts and the types of insecticides used in the country. Overall, there was a reduced susceptibility of An. arabiensis for the pyrethroid lambda-cyhalothrin and for dichloro diphenyl trichloroethane [DDT], which have similar modes of action and have been used in the country for many years. The Okavango district exhibited the greatest reduction in susceptibility, followed by Ngamiland and then Bobirwa, reflective of national intervention strategy spraying intensities. Vector mosquitoes were, however, highly susceptible to carbamates and organophosphates irrespective of region.ConclusionsThese results provide important findings of vector susceptibility to insecticides recommended for vector control. The results highlight the need to implement insecticide application regimes that more effectively including regionally integrated resistance management strategies for effective malaria control and elimination.

Highlights

  • Since the advent of the Green Revolution, pesticides have played an important role in the global management of invertebrate pests including vector mosquitoes

  • Each sampled district was represented by a village undergoing a deployment of chemical intervention (IRS and/or long-lasting insecticide nets (LLINs)) through the country’s national malaria vector control programme

  • Suspected resistance (90–97% mortality) to organochlorines was confirmed in all study sites (Table 1)

Read more

Summary

Introduction

Since the advent of the Green Revolution, pesticides have played an important role in the global management of invertebrate pests including vector mosquitoes. Insects often display insensitivity to synthetic insecticides owing to prolonged exposure that may select for resistance development. Such insecticide insensitivity may regress national and regional coordination in mosquito vector management and malaria control. Arthropods have been controlled using synthetic pesticides with dramatic reduction on target pest populations and their associated impacts of society [1, 2]. While effective, their prolonged and widespread use has unintentionally resulted in increased prevalence of pesticide resistance, with agricultural and medical implications [3, 4]. Without empirical evidence for optimal efficacy, synthetic pesticidal active ingredients continue to be used within same localities

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call