Abstract

Spatial and temporal variation of frequencies of thunderstorms over Sri Lanka using thunder day data is presented. A thunder day is simply a calendar day in which thunder is heard at least once at a given location. Two sets of data were collected and analyzed: annual totals for 10 climatological stations for a period of 50 years and monthly totals for 20 climatological stations for a period of 20 years. The average annual thunder days over Sri Lanka was found to be 76. Among the climatological stations considered, a high number of annual thunder days was recorded in Ratnapura (150 days/year), followed by Colombo (108 days/year) and Bandarawela (106 days/year). It appears that there are no widespread long-term increasing or decreasing trends in thunderstorm frequencies. However, Colombo, the capital of Sri Lanka which has over two million people shows an increasing trend of 0.8 thunder days per year. Although there is a high variability between stations reporting the number of thunder days, the overall pattern within a year is clear. Thunderstorm frequencies are high during two periods: March–May and September–November, which coincide with the first inter-monsoon and second inter-monsoon periods. Compared to the dry zone, the wet zone, especially the southwestern region, has high thunderstorm activity. There is a clear spatial difference in thunderstorm activities during the southwest and northeast monsoon seasons. During both these seasons, enhanced thunderstorm activities are reported on the leeward side of the mountain range. A slight reduction in the thunderstorm activities was found in the high elevation areas of the hill country compared to the surrounding areas. A lightning ground flash density map derived using annual thunder days is also presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.