Abstract
Fine particulate matter (i.e., PM2.5) has gained extensive attention owing to its adverse effects. The impacts of PM2.5 may vary in time and space due to the spatiotemporal variations of PM2.5 number size distribution and chemical compositions. This research analyzed the latest PM2.5 chemical compositions measurements with an aim to better understand the dynamic changes of PM2.5 in response to emission reductions due to the new regulations. The particulate measurements from the Southeastern Aerosol Research and Characterization (SEARCH) network between 2001 and 2016 were analyzed for the spatiotemporal variations of PM2.5 and inorganic PM2.5 (iPM2.5 = SO42- + NH4+ + NO3-) chemical compositions in the Southeastern United States (U.S.). It was discovered that PM2.5 and iPM2.5 mass concentrations exhibited significant downward trends in 2001-2016. Both PM2.5 and iPM2.5 mass concentrations were higher at urban and inland sites than rural/suburban and coastal sites. The higher iPM2.5 concentrations at agricultural sites were attributed to the influences of ammonia (NH3) emissions from animal feeding operations (AFOs). The iPM2.5 was the dominant contributor to PM2.5 in 2001-2016 at the coastal sites, whereas organic carbon matter (OCM) was the major contributor to PM2.5 after 2011 at the inland sites. Our data analysis suggests that significant decrease of PM2.5 concentrations is attributed to the reductions in nitrogen oxides (NOx) and sulfur dioxide (SO2) emissions in 2001-2016. Findings from this research provide insights into the development of effective PM2.5 control strategies and assessment of air pollutants exposure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.